## AN3172 <br> Application note

## 19 V - 90 W adapter with PFC for laptop computers using the L6563H and L6599A

## Introduction

This application note describes the performance of a 90 W , wide-range mains, power-factorcorrected, AC-DC adapter demonstration board. Its electrical specification is tailored on a typical hi-end portable computer power adapter.

The architecture is based on a two-stage approach; a front-end PFC pre-regulator based on the L6563H TM PFC controller and a downstream LLC resonant half-bridge converter using the new L6599A resonant controller. Thanks to the chipset used, the main aspects of this design are very high efficiency, compliance with ENERGY STAR ${ }^{\circledR}$ Eligibility Criteria (EPA rev. 2.0 EPS), and very low input consumption at no-load (<0.3 W).

Figure 1. EVL6599A-90WADP: 90 W adapter demonstration board


## Contents

1 Main characteristics and circuit description ..... 5
1.1 Startup sequence ..... 6
1.2 Brownout protection ..... 6
1.3 Fast voltage feed forward ..... 7
1.4 Resonant power stage ..... 7
1.5 Output voltage feedback loop ..... 8
1.6 L6599A overload and short-circuit protection ..... 8
1.7 PFC overvoltage and open-loop protection ..... 8
1.8 Standby power saving ..... 9
2 Efficiency measurement ..... 11
2.1 Light-load operation efficiency ..... 12
3 Harmonic content measurement ..... 13
4 Functional check ..... 14
4.1 Standby and no-load operation ..... 15
4.2 Overcurrent and short-circuit protection ..... 16
5 Thermal map ..... 18
6 Conducted emission pre-compliance test ..... 20
7 BOM list ..... 21
8 PFC coil specification ..... 26
8.1 Mechanical aspect and pin numbering ..... 27
$9 \quad$ Transformer specifications ..... 28
9.1 Mechanical aspect and pin numbering ..... 29
10 Revision history ..... 30

## List of figures

Figure 1. EVL6599A-90WADP: 90 W adapter demonstration board ..... 1
Figure 2. Electrical diagram ..... 10
Figure 3. Efficiency vs. output power diagram ..... 11
Figure 4. Light-load efficiency diagram ..... 12
Figure 5. Compliance to EN61000-3-2 at $230 \mathrm{Vac}-50 \mathrm{~Hz}$, full load ..... 13
Figure 6. Compliance to JEITA-MITI at $100 \mathrm{Vac}-50 \mathrm{~Hz}$, full load ..... 13
Figure 7. Resonant stage waveforms at $115 \mathrm{~V}-60 \mathrm{~Hz}$ - full load ..... 14
Figure 8. Resonant stage waveforms at $230 \mathrm{~V}-50 \mathrm{~Hz}$ - full load ..... 14
Figure 9. Rectifier waveforms ..... 15
Figure 10. Startup waveforms ..... 15
Figure 11. No-load operation ..... 15
Figure 12. No-load operation - detail ..... 15
Figure 13. Transition full load to no-load at $265 \mathrm{Vac}-50 \mathrm{~Hz}$ ..... 16
Figure 14. Transition no-load to full load at $265 \mathrm{Vac}-50 \mathrm{~Hz}$ ..... 16
Figure 15. Short-circuit at full load and $115 \mathrm{Vac}-60 \mathrm{~Hz}$ ..... 17
Figure 16. Thermal map at $115 \mathrm{Vac}-60 \mathrm{~Hz}$ - full load ..... 18
Figure 17. Thermal map at $230 \mathrm{Vac}-50 \mathrm{~Hz}$ - full load ..... 18
Figure 18. CE Peak measurement at 115 Vac and full load ..... 20
Figure 19. CE peak measurement at 230 Vac and full load ..... 20
Figure 20. PFC coil electrical diagram ..... 26
Figure 21. PFC coil mechanical aspect ..... 27
Figure 22. Transformer electrical diagram ..... 28
Figure 23. Transformer overall drawing ..... 29

## List of tables

Table 1. Overall efficiency ..... 11
Table 2. Light-load efficiency ..... 12
Table 3. Thermal maps reference points ..... 19
Table 4. EVL6599A-90WADP demonstration board: BOM list ..... 21
Table 5. PFC coil winding data ..... 26
Table 6. Transformer winding data ..... 28
Table 7. Document revision history ..... 30

## 1 <br> Main characteristics and circuit description

The main features of the SMPS are:

- Universal input mains range: 90 $\div 264 \mathrm{Vac}$ - frequency $45 \div 65 \mathrm{~Hz}$
- Output voltage: 19 V at 4.75 A continuous operation
- Mains harmonics: Acc. to EN61000-3-2 Class-D or JEITA-MITI Class-D
- Standby mains consumption: <0.3 W at 230 Vac
- Efficiency at nominal load: Better than 90 \% at full load
- EMI: According to EN55022-Class-B
- Safety: According to EN60950
- Dimensions: 65x151 mm, 25 mm component maximum height
- PCB: Double side, $70 \mu \mathrm{~m}$, FR-4, Mixed PTH/SMT

The circuit is composed of two stages; a front-end PFC using the L6563H and an LLC resonant converter based on the L6599A.

The PFC stage works as the pre-regulator and powers the resonant stage with a constant voltage of 400 V . The downstream converter operates only if the PFC is on and regulating its output voltage. In this way, the resonant stage can be optimized for a narrow input voltage range, improving the efficiency and the primary side power components.

### 1.1 Startup sequence

As previously indicated, the PFC acts as master and the resonant stage can operate only if the PFC output is delivering its nominal output voltage. Therefore the circuit is designed so that at startup the PFC starts first, then the downstream converter turns-on. At the beginning, the L6563H is supplied by the integrated high voltage startup circuit; once the PFC starts switching, a charging pump connected to the PFC inductor supplies both PFC and resonant controllers. Once both stages have been activated, the controllers are also supplied by the auxiliary winding of the resonant transformer, assuring correct supply voltage, even during standby operation.

Because the L6563H integrated HV startup circuit is turned off, and therefore not dissipative during normal operation, it makes a significant contribution to power consumption reduction once the power supply operates at light-load, in agreement with standby worldwide standards currently required.

### 1.2 Brownout protection

Brownout protection prevents the circuit from working with abnormal mains levels. It is easily achieved using the RUN pin (\#12) of the L6563H; this pin is connected through a resistor divider to the VFF pin (\#5) providing the information of the mains voltage peak value. An internal comparator allows IC operations if the mains level is correct, within the nominal limits. At startup, if the input voltage is below 90 Vac (typ.), circuit operations are inhibited.

The L6599A has similar protection on the LINE pin (\#7). It is used to prevent the resonant converter from working with a too low input voltage which can cause incorrect capacitive mode operation. If the bulk voltage (PFC output) is below 380 V , the resonant stage startup is not allowed. The L6599A LINE pin internal comparator has a hysteresis allowing the turnon and turn-off voltage to be set independently. The turn-off threshold has been set to 300 V in order to avoid capacitive mode operation but allow the resonant stage to operate even in the case of mains sag and a consequent PFC output dip.

### 1.3 Fast voltage feed forward

Voltage on the L6563H VFF pin (\#5) has the same value as the peak value of the voltage on the MULT pin (\#3) and it is generated by the RC network (R15+R26, C12) connected to VFF, completing an internal peak-holding circuit. This signal is necessary to derive information on the RMS input voltage to compensate the loop gain which is mains voltage dependent.

In general, if the VFF time constant is too small, the voltage generated is affected by a considerable amount of ripple at twice the mains frequency. Because the VFF signal is fed into the multiplier the excessive ripple causes distortion of the current reference resulting in high THD and poor PF. On the other hand, if the time constant is set too large there is a considerable delay in setting the right amount of feed-forward, resulting in excessive overshoot or undershoot of the pre-regulator's output voltage in response to large line voltage changes.

To overcome this issue, the L6563H implements the new Fast Voltage Feed Forward function. As soon as the voltage on the VFF pin decreases from a set threshold ( 40 mV typically), a mains dip is assumed and an internal switch rapidly discharges the VFF capacitor via a $10 \mathrm{k} \Omega$ resistor. Thanks to this feature it is possible to set an RC circuit with a long time constant, assuring a low THD, but keeping a fast response to mains voltage variations.

### 1.4 Resonant power stage

The downstream converter implements the ST L6599A, incorporating all the functions necessary to properly control the resonant converter with a 50 percent fixed duty cycle and working with variable frequency.

The transformer uses the integrated magnetic approach, incorporating the resonant series inductance. Therefore, no additional external coil is needed for the resonance.

The transformer configuration chosen for the secondary winding is centre tap and makes use of a couple of power schottky rectifiers p/n STPS30H60CFP. A small LC filter has been added on the output, filtering the high frequency ripple.

D15, R56, R62, R65, R66, Q5, and Q6 implement an output voltage "fast discharge" circuit, quickly discharging the output capacitors when the converter is turned off. It has been implemented to quickly decrease the residual output voltage once the converter is turned off at no-load.

### 1.5 Output voltage feedback loop

The feedback loop is implemented by means of a typical circuit using a TL431 modulating the current in the optocoupler diode.

On the primary side, R34 - connecting pin RFMIN (\#4) to the optocoupler's phototransistor closes the feedback loop and its value sets the maximum switching frequency at about 130 kHz . This value has been chosen to limit the switching losses at light-load operation. R31, connecting the same pin to ground, sets the minimum switching frequency. The R-C series R44 and C18 sets both soft-start maximum frequency and duration.

### 1.6 L6599A overload and short-circuit protection

The current into the primary winding is sensed by the lossless circuit R41, C27, D11, D10, R39, and C25 and it is fed into the ISEN pin (\#6). In the case of overcurrent, the voltage on the pin overpasses an internal comparator threshold ( 0.8 V ), triggering a protection sequence. The capacitor (C45) connected to the DELAY pin (\#2) is charged by an internal $150 \mu \mathrm{~A}$ current generator and is slowly discharged by the external resistor (R24). If the voltage on the pin reaches 2 V , the soft-start capacitor is completely discharged so that the switching frequency is pushed to its maximum value. As the voltage on the pin exceeds 3.5 V the IC stops switching and the internal generator is turned off, so that the voltage on the pin decays because of the external resistor. The IC is soft-restarted as the voltage drops below 0.3 V . In this way, under short-circuit conditions, the converter works intermittently with very low average input power.

### 1.7 PFC overvoltage and open-loop protection

Both circuit stages, PFC and resonant, are equipped with their own overvoltage protections.
The L6563H PFC controller monitors its output voltage via the resistor divider connected to a dedicated pin (PFC_OK, \#7) protecting the circuit in the case of loop failures or disconnection of the feedback loop divider. In the case where a fault condition is detected, the PFC_OK circuitry latches the L6563H operations and, by means of the PWM_LATCH pin (\#8), it also latches the L6599A, via the DIS pin (\#8). The converter is kept latched by the L6563H HV circuit that supplies the IC charging the Vcc capacitor periodically. To resume converter operation mains restart is necessary.

### 1.8 Standby power saving

The board implements a burst-mode function allowing a significant power saving during light-load operation.

The L6599A's STBY pin (\#5) senses the optocoupler's collector voltage which is related to the feedback control and is proportional to the output load. This signal is compared to an internal reference ( 1.24 V ); if the load decreases and the voltage on the STBY pin goes lower than the reference, the IC enters an idle state and its quiescent current is reduced. Once the voltage exceeds the reference by 50 mV , the controller restarts switching. Burstmode operation load threshold can be programmed by properly choosing the resistor connecting the optocoupler to the RFMIN pin (R34). On this board the controller operates in burst-mode if the load falls below $\sim 15 \mathrm{~W}$.

The L6563H implements its own burst-mode function. If the COMP voltage falls below 2.5 V , the IC stops switching, causing an output voltage decrease, as a consequence the COMP voltage rises again and the IC restarts switching.

In order to achieve a better load transient response, the PFC burst-mode operation is partially forced by the resonant converter; once the L6599A stops switching due to load drops, its PFC_STOP pin pulls down the L6563H's PFC_OK pin, disabling PFC switching. Thanks to this solution, the PFC is forced into idle state when the resonant stage is not switching and rapidly wakes-up when the downstream converter restarts switching. This solution prevents a significant drop of the bulk voltage in the case of abrupt load rising.

Figure 2. Electrical diagram


## 2 Efficiency measurement

EPA rev. 2.0 external power supply compliance verification.
Table 1 shows the no-load consumption and the overall efficiency, measured at the nominal mains voltages. At 115 Vac the average efficiency is $89.96 \%$, while at 230 Vac it is $91.12 \%$. Both values are much higher than the minimum required by EPA rev2.0 External power supply limits ( $87 \%$ ).

Measurements are also given in Figure 3 for reference.
Even at no-load the board performance is superior; maximum no-load consumption at nominal mains voltage is less than 250 mW only; even this value is significantly lower than the 500 mW limit imposed by the ENERGY STAR program.

Table 1. Overall efficiency

| Test | $230 \mathrm{~V}-50 \mathrm{~Hz}$ |  |  |  |  | $115 \mathrm{~V}-60 \mathrm{~Hz}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Vout <br> [V] | lout <br> [A] | Pout <br> [W] | Pin <br> [W] | Eff. <br> [\%] | Vout <br> [V] | lout <br> [A] | Pout <br> [W] | Pin <br> [W] | Eff. <br> [\%] |
| No load | 18.98 | 0.00 | 0.00 | 0.246 | ----- | 18.97 | 0.00 | 0.00 | 0.235 | ------ |
| 100 \% load eff. | 18.93 | 4.700 | 88.97 | 96.15 | 92.53 \% | 18.93 | 4.700 | 88.97 | 98.04 | 90.75 \% |
| 75 \% load eff. | 18.94 | 3.526 | 66.78 | 72.29 | 92.38 \% | 18.94 | 3.526 | 66.78 | 73.40 | 90.98 \% |
| 50 \% load eff. | 18.95 | 2.352 | 44.57 | 48.72 | 91.48 \% | 18.95 | 2.352 | 44.57 | 49.14 | 90.70 \% |
| 25 \% load eff. | 18.96 | 1.177 | 22.32 | 25.33 | 88.10 \% | 18.96 | 1.177 | 22.32 | 25.53 | 87.41 \% |
| Average eff. |  |  |  |  | 91.12 \% |  |  |  |  | 89.96 \% |

Figure 3. Efficiency vs. output power diagram


### 2.1 Light-load operation efficiency

Measurement results are given in Table 2 and plotted in Figure 4. As seen, efficiency is better than $55 \%$ even for very light loads such as 500 mW .

Table 2. Light-load efficiency

| Test | $\mathbf{2 3 0 ~ V ~ - ~} 50 \mathrm{~Hz}$ |  |  |  |  | $115 \mathrm{~V}-60 \mathrm{~Hz}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Vout <br> [V] | lout [mA] | Pout <br> [W] | Pin <br> [W] | Eff. <br> [\%] | Vout [V] | lout <br> [mA] | Pout <br> [W] | Pin <br> [W] | Eff. [\%] |
| 0.25 W | 18.89 | 13.06 | 0.247 | 0.643 | 38.37 \% | 18.89 | 13.06 | 0.247 | 0.62 | 39.60 \% |
| 0.5 W | 18.89 | 26.83 | 0.507 | 0.911 | 55.63 \% | 18.89 | 26.83 | 0.507 | 0.869 | 58.32 \% |
| 1.0 W | 18.89 | 51.92 | 0.981 | 1.415 | 69.31 \% | 18.89 | 51.93 | 0.981 | 1.404 | 69.87 \% |
| 1.5 W | 18.89 | 78.90 | 1.490 | 2.014 | 74.00 \% | 18.89 | 78.90 | 1.490 | 2.010 | 74.15 \% |
| 2.0 W | 18.89 | 105.9 | 2.000 | 2.608 | 76.67 \% | 18.89 | 105.9 | 2.000 | 2.610 | 76.61 \% |
| 2.5 W | 18.89 | 130.2 | 2.459 | 3.145 | 78.17 \% | 18.89 | 130.2 | 2.459 | 3.152 | 78.01 \% |
| 3.0W | 18.89 | 157.2 | 2.970 | 3.748 | 79.23 \% | 18.89 | 157.2 | 2.970 | 3.762 | 78.93 \% |
| 3.5 W | 18.89 | 184.2 | 3.480 | 4.337 | 80.23 \% | 18.88 | 184.2 | 3.478 | 4.358 | 79.80 \% |
| 4.0 W | 18.88 | 211.2 | 3.987 | 4.919 | 81.04\% | 18.88 | 211.2 | 3.987 | 4.936 | 80.76 \% |
| 4.5 W | 18.88 | 235.4 | 4.445 | 5.415 | 82.08 \% | 18.88 | 235.4 | 4.445 | 5.453 | 81.51\% |
| 5.0 W | 18.88 | 262.4 | 4.954 | 5.983 | 82.81 \% | 18.88 | 262.4 | 4.954 | 6.031 | 82.14 \% |

Figure 4. Light-load efficiency diagram


## 3 Harmonic content measurement

The board has been tested according to the European standard EN61000-3-2 Class-D and Japanese standard JEITA-MITI Class-D, at both the nominal input voltage mains. As shown in Figure 5 and 6, the circuit is able to reduce the harmonics well below the limits of both regulations.

Figure 5. Compliance to EN61000-3-2 at 230 Figure 6. Compliance to JEITA-MITI at 100 Vac - $50 \mathbf{~ H z}$, full load Vac - 50 Hz , full load


On the bottom side of the diagrams the total harmonic distortion and power factor have also been measured. The values in all conditions give a clear idea about the correct functioning of the PFC.

## 4 Functional check

The following are some waveforms relevant to the resonant stage during steady-state operation. The selected switching frequency is about 100 kHz , in order to have a good trade off between transformer losses and dimensions. The converter operates above the resonance frequency. Figure 8 shows the resonant ZVS operation. It is worth noting that both MOSFETs are turned on when resonant current is flowing through their body diodes and drain-source voltage is zero.

Figure 7. Resonant stage waveforms at 115 V Figure 8. Resonant stage waveforms at 230 V - 60 Hz - full load
-50 Hz - full load


In Figure 9 typical waveforms relevant to the secondary side are represented; it is worth noting that the rectifiers reverse the working voltage and the current flowing through them.

The waveforms during the start at 90 Vac and full load are shown in Figure 10. It is possible to note the sequence of the two stages; at power-on the L6563H and L6599A Vcc voltages increase up to the turn-on thresholds of the two ICs. The PFC starts and its output voltage increases from the mains rectified voltage to its nominal value. In the meantime the L6599A is kept inactive by the LINE pin (\#7) until the PFC voltage reaches the set threshold. Then the resonant starts operating and the output voltage reaches the nominal level.

Figure 9. Rectifier waveforms


CH1: D23 anode voltage CH2: D24 anode voltage CH3: D23 current

CH4: D24 current

Figure 10. Startup waveforms


### 4.1 Standby and no-load operation

In Figure 11 and Figure 12, some burst-mode waveforms are given. As seen, both L6599A and L6563H operate in burst-mode. In Figure 11 it may also be noted that PFC and LLC bursts are synchronized.

Figure 11. No-load operation


In Figure 13 and 14 the transitions from full load to no-load and vice versa, at maximum input voltage, have been checked. The maximum input voltage has been chosen because it is the most critical input voltage for transition; in fact at no-load the burst pulses have the lower repetition frequency and the Vcc may drop, causing restart cycles of the controller. As seen in Figure 13 and 14, both transitions are clean and there isn't any output voltage or Vcc dip.

Figure 13. Transition full load to no-load at 265 Figure 14. Transition no-load to full load at 265 Vac- 50 Hz Vac - 50 Hz


### 4.2 Overcurrent and short-circuit protection

The L6599A is equipped with a current sensing input (pin \#6, ISEN) and a dedicated overcurrent management system. The current flowing in the resonant tank is detected and the signal is fed into the ISEN pin. It is internally connected to a first comparator, referenced to 0.8 V , and referenced to 1.5 V in a second comparator. If the voltage externally applied to the pin exceeds 0.8 V , the first comparator is tripped causing an internal switch to be turned on and to discharge the soft-start capacitor CSS.

Under output short-circuit, this operation results in a nearly constant peak primary current.
With the L6599A the user can externally program the maximum time that the converter is allowed to run overloaded or under short-circuit conditions. Overloads or short-circuits lasting less than the set time do not cause any other action, therefore providing the system with immunity to short duration phenomena. If, instead, the overload condition continues, a protection procedure is activated which shuts down the L6599A and, in the case of continuous overload/short-circuit, results in continuous intermittent operation with a user defined duty cycle. This function is realized with the DELAY pin (\#2), by means of a capacitor C45 and the parallel resistor R24 connected to ground. When the voltage on the ISEN pin exceeds 0.8 V the first OCP comparator, in addition to discharging CSS, turns on an internal $150 \mu \mathrm{~A}$ current generator that, via the DELAY pin, charges C45. When the voltage on C45 is 3.5 V , the L6599A stops switching and the PFC_STOP pin is pulled low. Also the internal generator is turned off, so that C45 is now slowly discharged by R24. The IC restarts when the voltage on C45 is less than 0.3 V . Additionally, if the voltage on the ISEN pin reaches 1.5 V for any reason (e.g. transformer saturation), the second comparator is triggered, the L6599A shuts down and the operation is resumed after an off-on cycle.

Figure 15. Short-circuit at full load and $115 \mathrm{Vac}-60 \mathrm{~Hz}$


In Figure 15 the narrow operating time with respect to the off time of the converter may be seen; consequently, the average output current, as well as the average primary current, are very low, avoiding over-heating of components and consequent failure.

## 5 Thermal map

In order to check the design reliability, a thermal mapping by means of an IR Camera was done. In Figure 16 and 17 the thermal measurements of the board, component side, at nominal input voltage, are shown. Some pointers, visible in the images, have been placed across key components or showing high temperature. The ambient temperature during both measurements was $27^{\circ} \mathrm{C}$.

Figure 16. Thermal map at $115 \mathrm{Vac}-60 \mathrm{~Hz}$ - full load


Figure 17. Thermal map at $\mathbf{2 3 0} \mathbf{~ V a c ~} \mathbf{- 5 0} \mathbf{~ H z}$ - full load


AM02478v1

Table 3. Thermal maps reference points

| Point | Reference | Description |
| :---: | :---: | :--- |
| A | L1 | EMI filtering inductor |
| B | D1 | Bridge rectifier |
| C | L2 | PFC inductor - hottest point |
| D | D4 | PFC output diode |
| E | Q1 | PFC MOSFET |
| F - G | Q3 \& Q4 | Resonant HB MOSFETs |
| H - I | T1 | Resonant power transformer |
| J - K | D23 \& D24 | Output rectifiers |

## 6 Conducted emission pre-compliance test

The following figures are the average measurement of the conducted noise at full load and nominal mains voltages. The limits shown in the images are EN55022 Class-B, which is the most popular standard for domestic equipment and has more severe limits compared to Class-A, dedicated to IT technology equipment. As seen in Figure 18 and 19, in all test conditions the measurements are far below the limits.

Figure 18. CE Peak measurement at 115 Vac and full load


Figure 19. CE peak measurement at 230 Vac and full load


## $7 \quad$ BOM list

Table 4. EVL6599A-90WADP demonstration board: BOM list

| Des. | Part type/ <br> Part value | Case style /Package | Description | Supplier |
| :---: | :---: | :---: | :---: | :---: |
| C1 | 470 nF | $9.0 \times 18.0$ p. 15 mm | X2 - MKP FILM CAP - B32922C3474K | EPCOS |
| C10 | 1 nF | 0805 | 50 V cercap - general purpose | AVX |
| C11 | 2n2F | 0805 | 50 V cercap - general purpose | AVX |
| C12 | 1 uF | 0805 | 25 V cercap - general purpose | AVX |
| C13 | 680 nF | 1206 | 25 V cercap - general purpose | AVX |
| C14 | 68 nF | 0805 | 50 V cercap - general purpose | AVX |
| C15 | 47 uF | DIA6.3X11 (mm) | 50 V aluminium elcap - YXF series - $105^{\circ} \mathrm{C}$ | RUBYCON |
| C16 | 2n2F | 1206 | 50 V cercap - general purpose | AVX |
| C17 | 220 pF | 0805 | $50 \mathrm{~V}-5$ \% - C0G - cercap | AVX |
| C18 | 4.7 uF | 1206 | 6.3 V cercap - general purpose | AVX |
| C19 | 100 nF | 1206 | 50 V cercap - general purpose | AVX |
| C2 | 2n2F | DWG | Y1 safety cap. DE1E3KX222M | MURATA |
| C20 | 2n2F | DWG | Y1 safety cap. DE1E3KX222M | MURATA |
| C21 | 2n2F | DWG | Y1 safety cap. DE1E3KX222M | MURATA |
| C22 | 220 pF | 0805 | 50 V cercap - general purpose | AVX |
| C23 | 10 nF | 0805 | 50 V cercap - general purpose | AVX |
| C24 | 100 uF | DIA10X12.5 (mm) | 50 V aluminium elcap - YXF series - $105^{\circ} \mathrm{C}$ | RUBYCON |
| C25 | 330 nF | 0805 | 50 V cercap - general purpose | AVX |
| C26 | 10 uF | DIA6.3X11 (mm) | 50 V aluminium elcap - YXF series - $105^{\circ} \mathrm{C}$ | RUBYCON |
| C27 | 220 pF | $5 \times 3 \mathrm{~mm}$ | 500 V cercap - 5MQ221KAAAA | AVX |
| C28 | 22 nF | $5 \times 18 \mathrm{p} .15 \mathrm{~mm}$ | 1000 V - mkp film cap - B32652A0223K000 | EPCOS |
| C29 | 470 uF | DIA10X20 (mm) | 35 V aluminium elcap - ZL series - $105^{\circ} \mathrm{C}$ | RUBYCON |
| C3 | 2n2F | DWG | Y1 safety cap. DE1E3KX222M | MURATA |
| C30 | 470 uF | DIA10X20 (mm) | 35 V aluminium elcap - ZL series - $105{ }^{\circ} \mathrm{C}$ | RUBYCON |
| C31 | 100 uF | DIA8X11 (mm) | 35 V aluminium elcap - YXF series - $105^{\circ} \mathrm{C}$ | RUBYCON |
| C32 | 100 nF | 0805 | 50 V cercap - general purpose | AVX |
| C33 | 470 pF | 0805 | 50 V - 5 \% - COG - cercap | AVX |
| C34 | 100 nF | 0805 | 50 V cercap - general purpose | AVX |
| C36 | 1 uF | DIA6.3X11 (mm) | 50 V aluminium elcap - YXF series - $105^{\circ} \mathrm{C}$ | RUBYCON |
| C37 | 10nF | 0805 | 50 V cercap - general purpose | AVX |
| C39 | 100 nF | 0805 | 50 V cercap - general purpose | AVX |

Table 4. EVL6599A-90WADP demonstration board: BOM list (continued)

| Des. | Part type/ Part value | Case style /Package | Description | Supplier |
| :---: | :---: | :---: | :---: | :---: |
| C4 | 470 nF | $9.0 \times 18.0$ p. 15 mm | X2 - MKP film cap - B32922C3474K | EPCOS |
| C40 | 100 nF | 1206 | 50 V cercap - general purpose | AVX |
| C43 | 4n7F | 1206 | 50 V cercap - general purpose | AVX |
| C44 | 10 nF | 1206 | 50 V cercap - general purpose | AVX |
| C45 | 220 nF | 0805 | 25 V cercap - general purpose | AVX |
| C46 | N.M. | 0805 | Not mounted |  |
| C5 | 470 nF | $7.0 \times 16.0$ p. 22.5 | 400 V - film cap - B32673Z5474 | EPCOS |
| C6 | 4N7 | 0805 | 50 V cercap - general purpose | AVX |
| C7 | 100 nF | PTH | 100 V cercap - general purpose | AVX |
| C8 | 10 uF | DIA6.3X11 (mm) | Aluminium elcap - YXF series - $105^{\circ} \mathrm{C}$ | RUBYCON |
| C9 | 68 uF | Dia. 18X32 mm | 450 V aluminium elcap - KXG series - $105{ }^{\circ} \mathrm{C}$ | United chemicon |
| D1 | GBU8J | STYLE GBU | Single-phase bridge rectifier | VISHAY |
| D10 | LL4148 | Minimelf SOD-80 | High speed signal diode | VISHAY |
| D11 | LL4148 | Minimelf SOD-80 | High speed signal diode | VISHAY |
| D12 | N.M. | Minimelf SOD-80 | Not mounted | VISHAY |
| D13 | N.M. | Minimelf SOD-80 | Not mounted | VISHAY |
| D14 | N.M. | Minimelf SOD-80 | Not mounted |  |
| D15 | BZV55-C15 | Minimelf SOD-80 | Zener diode | VISHAY |
| D16 | LL4148 | Minimelf SOD-80 | High speed signal diode | VISHAY |
| D17 | N.M. | Minimelf SOD-80 | Not mounted |  |
| D18 | LL4148 | Minimelf SOD-80 | High speed signal diode | VISHAY |
| D19 | LL4148 | Minimelf SOD-80 | High speed signal diode | VISHAY |
| D2 | LL4148 | Minimelf SOD-80 | High speed signal diode | VISHAY |
| D20 | BZV55-C15 | Minimelf SOD-80 | Zener diode | VISHAY |
| D21 | BZV55-C15 | Minimelf SOD-80 | Zener diode | VISHAY |
| D22 | LL4148 | Minimelf SOD-80 | Fast switching diode | VISHAY |
| D23 | STPS30H60CFP | TO-220FP | Power Schottky rectifier | STMicroelectronics |
| D24 | STPS30H60CFP | TO-220FP | Power Schottky rectifier | STMicroelectronics |
| D3 | 1N4005 | DO-41 | General purpose rectifier | VISHAY |
| D4 | STTH2L06 | DO-41 | Ultrafast high voltage rectifier | STMicroelectronics |
| D5 | LL4148 | Minimelf SOD-80 | High speed signal diode | VISHAY |
| D6 | LL4148 | Minimelf SOD-80 | High speed signal diode | VISHAY |
| D7 | LL4148 | Minimelf SOD-80 | High speed signal diode | VISHAY |
| D8 | BZV55-B27 | Minimelf SOD-80 | Zener diode | VISHAY |

Table 4. EVL6599A-90WADP demonstration board: BOM list (continued)

| Des. | Part type/ Part value | Case style /Package | Description | Supplier |
| :---: | :---: | :---: | :---: | :---: |
| D9 | STPS1L60A | SMA | Power Schottky rectifier | STMicroelectronics |
| F1 | FUSE T4A | 8.5x4 p. 5.08 mm | Fuse 4A - time lag - 3921400 | Littlefuse |
| HS1 | HEAT-SINK | DWG | Heat sink for D1, Q1, Q3, Q4 |  |
| HS2 | HEAT SINK | DWG | Heat sink for D23, D24 |  |
| J1 | MKDS 1,5/ 3-5,08 | DWG | PCB term. block, screw conn.,pitch 5 mm 3 W . | Phoenix contact |
| J2 | MKDS 1,5/ 2-5,08 | DWG | PCB term. block, screw conn.,pitch 5mm 2 W . | Phoenix contact |
| JPX1 | Jumper | Wire | Bare copper wire jumper |  |
| JPX2 | Jumper | Wire | Bare copper wire jumper |  |
| JPX3 | Jumper | Wire | Bare copper wire jumper |  |
| L1 | 2019.0002 |  | CM inductor $2 \times 18 \mathrm{mH} 1.8 \mathrm{~A}$ | MAGNETICA |
| L2 | 1974.0002 | DWG | PFC inductor - 0.52mH (X08141-01-B) | MAGNETICA |
| L3 | 1071.0083 | DWG | $1 \mathrm{uH}-5 \mathrm{~A}$ inductor | MAGNETICA |
| Q1 | STF12NM50N | TO-220FP | N-channel power MOSFET | STMicroelectronics |
| Q10 | BC847C | SOT-23 | NPN small signal BJT | VISHAY |
| Q2 | BC857C | SOT-23 | PNP small signal BJT | VISHAY |
| Q3 | STF7NM50N | TO-220FP | N-channel power MOSFET | STMicroelectronics |
| Q4 | STF7NM50N | TO-220FP | N-channel power MOSFET | STMicroelectronics |
| Q5 | BC847C | SOT-23 | NPN small signal BJT | VISHAY |
| Q6 | BC847C | SOT-23 | NPN small signal BJT | VISHAY |
| Q7 | N.M. | SOT-23 | PNP small signal BJT - not used |  |
| Q9 | BC847C | SOT-23 | NPN small signal BJT | VISHAY |
| R1 | 3M3 | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R10 | 27 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R11 | 2M2 | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R12 | 2M2 | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R13 | 8K2 | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R14 | 51 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R15 | 56 K | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R16 | 4K7 | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R17 | 2M2 | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R18 | 82 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R19 | 56 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R2 | 3M3 | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R20 | ORO | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |

Table 4. EVL6599A-90WADP demonstration board: BOM list (continued)

| Des. | Part type/ Part value | Case style /Package | Description | Supplier |
| :---: | :---: | :---: | :---: | :---: |
| R21 | 39 R | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%$, $250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R22 | 0R47 | PTH | SFR25 axial stand. film res, $0.4 \mathrm{~W}, 5 \%, 250$ ppm $/{ }^{\circ} \mathrm{C}$ | VISHAY |
| R23 | 0R68 | PTH | SFR25 axial stand. film res, $0.4 \mathrm{~W}, 5 \%, 250$ ppm $/{ }^{\circ} \mathrm{C}$ | VISHAY |
| R24 | 1 Meg | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R25 | 56 R | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R26 | 1 Meg | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R27 | 470 R | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R28 | 33 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R29 | 1K0 | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R3 | 1 Meg | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R30 | 10 R | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R31 | 33 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R32 | 47 R | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R33 | N.M. | 0805 | Not mounted |  |
| R34 | 5K1 | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R35 | 180 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R36 | N.M. | 0805 | Not mounted |  |
| R37 | 220 K | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R38 | 56 R | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R39 | 180 R | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R4 | 4M7 | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%$, $250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R40 | 0R0 | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R41 | 100 R | PTH | SFR25 axial stand. film res, $0.4 \mathrm{~W}, 5 \%, 250$ ppm $/{ }^{\circ} \mathrm{C}$ | VISHAY |
| R42 | 10 K | 0805 | SMD STD film res, 1/8 W, 5 \%, $250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R43 | N.M. | 0805 | Not mounted |  |
| R44 | 12 K | 1206 | SMD STD film res, 1/4 W, 5 \%, $250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R45 | N.M. | 0805 | Not mounted |  |
| R46 | 100 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R47 | 1K5 | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R48 | 120 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R49 | 39 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R5 | 10 R | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |

Table 4. EVL6599A-90WADP demonstration board: BOM list (continued)

| Des. | Part type/ Part value | Case style /Package | Description | Supplier |
| :---: | :---: | :---: | :---: | :---: |
| R50 | 6K2 | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 1 \%$, $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R51 | 120 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R52 | 12 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R53 | 2K2 | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R54 | 0R0 | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R55 | 2K7 | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R56 | 18 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R57 | 47R | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R58 | 100 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R59 | 100 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R6 | NTC 2R5-S237 | DWG | NTC resistor P/N B57237S0259M000 | EPCOS |
| R60 | 10 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R61 | 2K7 | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R62 | 4K7 | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R65 | 47K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R66 | 2K2 | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R67 | N.M. | 0805 | Not mounted |  |
| R68 | N.M. | 1206 | Not mounted |  |
| R69 | 4K7 | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 5 \%, 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R7 | 1Meg | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R8 | 1Meg | 1206 | SMD STD film res, $1 / 4 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| R9 | 62 K | 0805 | SMD STD film res, $1 / 8 \mathrm{~W}, 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | VISHAY |
| T1 | 1860.0032 | DWG, ETD34 | Resonant power transformer | MAGNETICA |
| U1 | L6563H | SO-16 | High voltage startup TM PFC controller | STMicroelectronics |
| U2 | L6599AD | SO-16 | Improved HV resonant controller | STMicroelectronics |
| U3 | SFH617A-4 | DIP-4, 10.16 mm | Optocoupler | Infineon |
| U4 | TL431AIZ | TO-92 | Programmable shunt voltage reference | STMicroelectronics |
| Z1 | PCB REV. 1.0 |  |  |  |

## 8 PFC coil specification

General description and characteristics:

- Application type: consumer, home appliances
- Transformer type: open
- Coil former: vertical type, 6+6 pins
- Max. temp. rise: $45^{\circ} \mathrm{C}$
- Max. operating ambient temperature: $60{ }^{\circ} \mathrm{C}$
- Mains insulation: n.a.
- Unit finishing: varnished

Electrical characteristics:

- Converter topology: boost, transition mode
- Core type: PQ26/20-PC44 or equivalent
- Min. operating frequency: 40 kHz
- Typical operating frequency: 120 kHz
- Primary inductance: $520 \mu \mathrm{H} \pm 15 \%$ at $1 \mathrm{kHz}-0.25 \mathrm{~V}$

Electrical diagram and winding characteristics:
Figure 20. PFC coil electrical diagram


Table 5. PFC coil winding data

| Pins | Windings | DC resistance | Number of turns | Wire type |
| :---: | :---: | :---: | :---: | :---: |
| $11-3$ | AUX | $125 \mathrm{~m} \Omega$ | 5.5 | $\phi 0.28 \mathrm{~mm}-\mathrm{G} 2$ |
| $5-9$ | PRIMARY | $267 \mathrm{~m} \Omega$ | 57.5 | $30 \times \phi 0.1 \mathrm{~mm}-\mathrm{G} 1$ |

### 8.1 Mechanical aspect and pin numbering

- Maximum height from PCB: 22 mm
- Coil former type: vertical, 6+6 Pins (Pins \#1, 2, 4, 6, 7, 10, and 12 are removed)
- Pin distance: 3.81 mm
- Row distance: 25 mm
- External copper shield: not insulated, wound around the ferrite core and including the coil former. Height is 8 mm . Connected to pin \#3 by a soldered solid wire.

Figure 21. PFC coil mechanical aspect


## Manufacturer:

- MAGNETICA, R. Volpini - Italy
- Inductor P/N: 1974.0002


## $9 \quad$ Transformer specifications

General description and characteristics:

- Application type: consumer, home appliances
- Transformer type: open
- Coil Former: horizontal type, 7+7 pins, two slots
- Max. temp. rise: $45^{\circ} \mathrm{C}$
- Max. operating ambient temperature: $60{ }^{\circ} \mathrm{C}$
- Mains insulation: Acc. with EN60065

Electrical characteristics:

- Converter topology: half-bridge, resonant
- Core type: ETD34-PC44 or equivalent
- Min. operating frequency: 60 kHz
- Typical operating frequency: 100 kHz
- Primary inductance: $1200 \mu \mathrm{H} \pm 8 \%$ at $1 \mathrm{kHz}-0.25 \mathrm{~V}$ (a)
- Leakage inductance: $200 \mu \mathrm{H}$ at $100 \mathrm{kHz}-0.25 \mathrm{~V}$ (b)

Electrical diagram and winding characteristics:
Figure 22. Transformer electrical diagram


Table 6. Transformer winding data

| Pins | Winding | DC resistance | Number of turns | Wire type |
| :---: | :---: | :---: | :---: | :---: |
| $2-4$ | Primary | $235 \mathrm{~m} \Omega$ | 50 | $30 \times \phi 0.1 \mathrm{~mm}-\mathrm{G} 1$ |
| $13-12$ | SEC - A |  |  |  |
| $10-9$ | SEC - B |  |  |  |
| 1$)$ | $9 \mathrm{~m} \Omega$ | 5 | $90 \times \phi 0.1 \mathrm{~mm}-\mathrm{G} 1$ |  |
| $5-6$ | AUX $^{(2)}$ | $94 \mathrm{~m} \Omega$ | 5 | $90 \times \phi 0.1 \mathrm{~mm}-\mathrm{G} 1$ |

1. Secondary windings $A$ and $B$ are in parallel
2. Aux winding is wound on top of primary winding
a. Measured between pins 2-4
b. Measured between pins 2-4 with only one secondary winding shorted

### 9.1 Mechanical aspect and pin numbering

- Maximum Height from PCB: 30 mm
- Coil Former Type: horizontal, 7+7 pins (pins \#1 and 7 are removed)
- Pin distance: 5.08 mm
- Row distance: 25.4 mm

Figure 23. Transformer overall drawing


Manufacturer:

- MAGNETICA, R. Volpini - Italy
- Transformer P/N: 1860.0032


## 10 Revision history

Table 7. Document revision history

| Date | Revision | Changes |  |
| :---: | :---: | :--- | :--- |
| 14-Dec-2010 | 1 | Initial release |  |

## Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

